Trig values of 36 degrees

Geometry

Statement

The exact value of the trigonometry functions of $ 36 \degree $ are:

$$ \sin(36 \degree) = \tfrac{1}{4} \sqrt{10 - 2\sqrt5} $$

$$ \cos(36 \degree) = \tfrac{1}{4} \sqrt{6 + 2\sqrt5} $$

$$ \tan(36 \degree) = \sqrt{5 - 2\sqrt5} $$

Sine

Use the sum of angles formula for sine:

$$ \sin(\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) $$

When substituting $ 18 \degree $ for $ \alpha $ and $ \beta $, you get:

$$ \sin(36 \degree) = \sin(18 \degree + 18 \degree) = \sin(18 \degree) \cos(18 \degree) + \cos(18 \degree) \sin(18 \degree) = 2 \sin(18 \degree) \cos(18 \degree) $$

Recall the exact trigonometry values of $ 18 \degreeĀ $:

$$ \sin(18 \degree) = \tfrac{1}{4} \sqrt{6 - 2\sqrt5} $$

$$ \cos(18 \degree) = \tfrac{1}{4} \sqrt{10 + 2\sqrt5} $$

Now substitute these values, and simplify:

$$\begin{aligned}\sin(36 \degree) &= 2 \sin(18 \degree) \cos(18 \degree) \newline&= 2 * \tfrac{1}{4} \sqrt{6 - 2\sqrt5} * \tfrac{1}{4} \sqrt{10 + 2\sqrt5} \newline&= \tfrac{1}{8} \sqrt{(6 - 2\sqrt5)(10 + 2\sqrt5)} \newline&= \tfrac{1}{8} \sqrt{60 + 12\sqrt5 - 20\sqrt5 - 20} \newline&= \tfrac{1}{8} \sqrt{40 - 8\sqrt5} \newline&= \tfrac{1}{8} \sqrt{4(10 - 2\sqrt5)} \newline&= \tfrac{1}{4} \sqrt{10 - 2\sqrt5}\end{aligned}$$

Cosine

Use the sum of angles formula for cosine:

$$ \cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) $$

When substituting $ 18 \degree $ for $ \alpha $ and $ \beta $, you get:

$$ \cos(36 \degree) = \cos(18 \degree + 18 \degree) = \cos(18 \degree) \cos(18 \degree) - \sin(18 \degree) \sin(18 \degree) = \cos(18 \degree)^2 - \sin(18 \degree)^2 $$

Recall the exact trigonometry values of $ 18 \degreeĀ $:

$$ \sin(18 \degree) = \tfrac{1}{4} \sqrt{6 - 2\sqrt5} $$

$$ \cos(18 \degree) = \tfrac{1}{4} \sqrt{10 + 2\sqrt5} $$

Now substitute these values, and simplify:

$$\begin{aligned}\cos(36 \degree) &= \cos(18 \degree)^2 - \sin(18 \degree)^2 \newline&= \left(\tfrac{1}{4} \sqrt{10 + 2\sqrt5}\right)^2 - \left(\tfrac{1}{4} \sqrt{6 - 2\sqrt5}\right)^2 \newline&= \tfrac{1}{16} \left(10 + 2\sqrt5 \right) - \tfrac{1}{16} \left(6 - 2\sqrt5 \right) \newline&= \tfrac{10}{16} + \tfrac{2}{16} \sqrt5 - \tfrac{6}{16} + \tfrac{2}{16} \sqrt5 \newline&= \tfrac{1}{4} + \tfrac{1}{4} \sqrt5 \newline&= \tfrac{1}{4} \left(1 + \sqrt5 \right) \newline&= \tfrac{1}{4} \sqrt{\left(1 + \sqrt5 \right)^2} \newline&= \tfrac{1}{4} \sqrt{6 + 2\sqrt5}\end{aligned}$$

Tangent

Use that tangent is sine divided by cosine and simplify.

$$\begin{aligned}\tan(36 \degree) &= \frac{\sin(36 \degree)}{\cos(36 \degree)} \newline&= \frac{\tfrac{1}{4} \sqrt{10 - 2\sqrt5}}{\tfrac{1}{4} \sqrt{6 + 2\sqrt5}} \newline&= \sqrt{\frac{10 - 2\sqrt5}{6 + 2\sqrt5}} \newline&= \sqrt{\frac{10 - 2\sqrt5}{6 + 2\sqrt5} * \frac{6 - 2\sqrt5}{6 - 2\sqrt5}} \newline&= \sqrt{\frac{60 - 20\sqrt5 - 12\sqrt5 + 20}{36 - 20}} \newline&= \sqrt{\frac{80 - 32\sqrt5}{16}} \newline&= \sqrt{\frac{16 \left(5 - 2\sqrt5 \right)}{16}} \newline&= \sqrt{5 - 2\sqrt5}\end{aligned}$$


Proofs building upon this proof

Exact values of the trig functions

This table shows all exact values of sine, cosine and tangent.

Trig values of 54 degrees

This proof shows the exact value of sin(54), cos(54) and tan(54)