Angle sum/difference formula for sine and cosine

Algebra

Statement

When adding or subtracting angles in sine or cosine, these formulae apply for $ \alpha, \beta \in \R $:

$$ \sin(\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) $$

$$ \sin(\alpha - \beta) = \sin(\alpha) \cos(\beta) - \cos(\alpha) \sin(\beta) $$

$$ \cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) $$

$$ \cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) $$

Proof

Use Euler's formula:

$$ e^{\theta i} = \cos(\theta) + i\sin(\theta) $$

When substituting $ \alpha + \beta $ for $ \theta $, you get:

$$ e^{(\alpha + \beta)i} = \cos(\alpha + \beta) + i\sin(\alpha + \beta) $$

Now, take $ e^{(\alpha + \beta)i} $ again and expand the brackets. Use that $ i^2 = -1 $.

$$\begin{aligned}e^{(\alpha + \beta)i} &= e^{\alpha i + \beta i} \newline&= e^{\alpha i} \cdot e^{\beta i} \newline&= \bigg(\cos(\alpha) + i\sin(\alpha)\bigg) \cdot \bigg(\cos(\beta) + i\sin(\beta)\bigg) \newline&= \cos(\alpha) \cos(\beta) + i \cos(\alpha) \sin(\beta) + i \sin(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \newline&= \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) + i \bigg(\cos(\alpha) \sin(\beta) + \sin(\alpha) \cos(\beta)\bigg)\end{aligned}$$

Since both expressions are equal to $ e^{(\alpha + \beta)i} $, set them equal to eachother:

$$ \cos(\alpha + \beta) + i \sin(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) + i \bigg(\cos(\alpha) \sin(\beta) + \sin(\alpha) \cos(\beta)\bigg) $$

Since sine and cosine give a real value for a real input, the real parts and imaginary parts must match, giving:

$$ \cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) $$

$$ \sin(\alpha + \beta) = \cos(\alpha) \sin(\beta) + \sin(\alpha) \cos(\beta) $$

When substituting $ - \beta $ for $ \beta $, use that $ \sin(-\theta) = -\sin(\theta) $ and $ \cos(-\theta) = \cos(\theta) $:

$$ \cos(\alpha - \beta) = \cos(\alpha) \cos(- \beta) - \sin(\alpha) \sin(-\beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) $$

$$ \sin(\alpha - \beta) = \cos(\alpha) \sin(- \beta) + \sin(\alpha) \cos(- \beta) = \sin(\alpha) \cos(\beta) - \cos(\alpha) \sin(\beta) $$


Proofs building upon this proof

Derivative of cos(x)

This proof shows what the derivative of cos(x) is.

Derivative of sin(x)

This proof shows what the derivative of sin(x) is.

Trig values of 15 degrees

This proof shows the exact value of sin(15), cos(15) and tan(15)

Trig values of 3 degrees

This proof shows the exact value of sin(3), cos(3) and tan(3).

Trig values of 36 degrees

This proof shows the exact value of sin(36), cos(36) and tan(36)

Trig values of 54 degrees

This proof shows the exact value of sin(54), cos(54) and tan(54)