Derivative of sin(x)

Calculus

Statement

The derivative of $ \sin(x) $ is:

$$ \tfrac{d}{dx}\big(\sin(x)\big) = \cos(x) $$

Proof

Take the definition of the derivative:

$$ \tfrac{d}{dx}\big(\sin(x)\big) = \lim_{h \to 0} \left(\frac{\sin(x + h) - \sin(x)}{h}\right) $$

Use the angle sum formula for sine to expand $ \sin(x + h) $:

$$ \tfrac{d}{dx}\big(\sin(x)\big) = \lim_{h \to 0} \left(\frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}\right) $$

Factor out $ \sin(x) $.

$$ \tfrac{d}{dx}\big(\sin(x)\big) = \lim_{h \to 0} \left(\frac{\sin(x)\big(\cos(h) - 1\big) + \cos(x)\sin(h)}{h}\right) $$

Split the limit.

$$ \tfrac{d}{dx}\big(\sin(x)\big) = \lim_{h \to 0} \left(\frac{\sin(x)\big(\cos(h) - 1\big)}{h}\right) + \lim_{h \to 0} \left(\frac{\cos(x)\sin(h)}{h}\right) $$

Factor out all factors without $ h $.

$$ \tfrac{d}{dx}\big(\sin(x)\big) = \sin(x) \cdot \lim_{h \to 0} \left(\frac{\cos(h) - 1}{h}\right) + \cos(x) \cdot \lim_{h \to 0} \left(\frac{\sin(h)}{h}\right) $$

Evaluate these limits. Use that the second limit is equal to $ 1 $ and $ \cos(0) = 1 $.

$$\begin{aligned}\tfrac{d}{dx}\big(\sin(x)\big) &= \sin(x) \cdot \lim_{h \to 0} \left(\frac{1 - 1}{h}\right) + \cos(x) \cdot 1 \newline&= \sin(x) \cdot 0 + \cos(x) \cdot 1 \newline&= \cos(x)\end{aligned}$$