Trig values of 18 degrees

Geometry

Statement

The exact value of the trigonometry functions of $ 18 \degree $ are:

$$ \sin(18 \degree) = \tfrac{1}{4} \sqrt{6 - 2 \sqrt{5}} $$

$$ \cos(18 \degree) = \tfrac{1}{4} \sqrt{10 + 2 \sqrt{5}} $$

$$ \tan(18 \degree) = \tfrac{1}{5} \sqrt{25 - 10 \sqrt{5}} $$

Proof

Construct triangle $ ABC $ with $ \angle C = 36 \degree $ and $ \angle A = \angle B = 72 \degree $. Then construct a bisector from $ A $ to $ D $ on $ BC $, so that $ \angle A_1 = \angle A_2 = 36 \degree $. Finally construct altitude $ CE $ on $ AB $, so that $ \angle C_1 = \angle C_2 = 18 \degree $. See the image below.

Let $ AC = m $. Because triangle $ ABC $ is isosceles, $ BC = AC = m $.

Let $ AB = n $. Because triangle $ ABD $ is isosceles, $ AD = AB = n $. And because triangle $ ADC $ is isosceles as well, $ CD = AD = n $.

Note that $ BE = \frac{1}{2} AB = \frac{1}{2} n $ and $ BD = BC - CD = m - n $.

Now prove that triangle $ ABC $ is similar to triangle $ CAB $:

$$\begin{rcases} \angle A_1 = \angle C = 36 \degree \newline \angle B = \angle A = 72 \degree \newline \angle D_1 = \angle B = 72 \degree \end{rcases} \triangle ABD \sim \triangle CAB$$

From those sililar triangles, we get:

$$ \frac{BD}{AB} = \frac{AB}{AC} $$

$$ \frac{m - n}{n} = \frac{n}{m} $$

Now cross-multiply and divide each term by $ m^2 $.

$$ m(m - n) = n * n $$

$$ m^2 - mn = n^2 $$

$$ n^2 + mn - m^2 = 0 $$

$$ \frac{n^2}{m^2} + \frac{n}{m} - 1 = 0 $$

$$ \left(\frac{n}{m}\right)^2 + \left(\frac{n}{m}\right) - 1 = 0 $$

Solve for $ \dfrac{n}{m} $ using the quadratic formula (only positive values) and isolate $ n $.

$$ \frac{n}{m} = \frac{-1 + \sqrt{1^2 - 4(1)(-1)}}{2} = \frac{-1 + \sqrt{5}}{2} $$

$$ n = \tfrac{1}{2} m (\sqrt{5} - 1) $$

Write $ \sqrt{5} - 1 $ as one square root.

$$ n = \tfrac{1}{2} m \sqrt{(\sqrt{5} - 1)^2} = \tfrac{1}{2} m \sqrt{6 - 2 \sqrt{5}} $$

Find $ CE $ using the Pythagorean theorem.

$$\begin{aligned}CE &= \sqrt{BC^2 - BE^2} \newline&= \sqrt{m^2 - (\tfrac{1}{2}n)^2} \newline&= \sqrt{m^2 - \left(\tfrac{1}{4}m \sqrt{6 - 2\sqrt{5}}\right)^2} \newline&= \sqrt{m^2 - \tfrac{1}{16} m^2 (6 - 2\sqrt{5})} \newline&= \sqrt{\tfrac{16}{16} m^2 - \tfrac{6}{16} m^2 + \tfrac{2\sqrt{5}}{16} m^2} \newline&= m * \frac{\sqrt{16 - 6 + 2 \sqrt{5}}}{\sqrt{16}} \newline&= \tfrac{1}{4} m \sqrt{10 + 2 \sqrt{5}}\end{aligned}$$

Sine

From the triangle, note that $ \sin(\angle C_1) = \dfrac{BE}{BC} $, so:

$$ \sin(18 \degree) = \frac{\frac{1}{2}n}{m} = \frac{\frac{1}{2} * \tfrac{1}{2} m \sqrt{6 - 2 \sqrt{5}}}{m} = \tfrac{1}{4} \sqrt{6 - 2 \sqrt{5}} $$

Cosine

From the triangle, note that $ \cos(\angle C_1) = \dfrac{CE}{BC} $, so:

$$ \cos(18 \degree) = \frac{\tfrac{1}{4} m \sqrt{10 + 2 \sqrt{5}}}{m} = \tfrac{1}{4} \sqrt{10 + 2 \sqrt{5}} $$

Tangent

From the triangle, note that $ \tan(\angle C_1) = \dfrac{BE}{CE} $, so:

$$\begin{aligned}\tan(18 \degree) &= \frac{\frac{1}{2}n}{\tfrac{1}{4} m \sqrt{10 + 2 \sqrt{5}}} \newline&= \frac{\frac{1}{2} * \tfrac{1}{2} m \sqrt{6 - 2 \sqrt{5}}}{\tfrac{1}{4} m \sqrt{10 + 2 \sqrt{5}}} \newline&= \frac{\sqrt{6 - 2\sqrt5}}{\sqrt{10 + 2\sqrt5}} \newline&= \sqrt{\frac{6 - 2\sqrt5}{10 + 2\sqrt5}} \newline&= \sqrt{\frac{6 - 2\sqrt5}{10 + 2\sqrt5} * \frac{10 - 2\sqrt5}{10 - 2\sqrt5}} \newline&= \sqrt{\frac{60 - 12\sqrt5 - 20\sqrt5 + 20}{100 - 20}} \newline&= \sqrt{\frac{80 - 32\sqrt5}{80}} \newline&= \sqrt{\frac{5 - 2\sqrt5}{5}} \newline&= \frac{\sqrt{5 - 2\sqrt5}}{\sqrt5} \newline&= \tfrac{1}{5} \sqrt5 \sqrt{5 - 2\sqrt5} \newline&= \tfrac{1}{5} \sqrt{25 - 10\sqrt5}\end{aligned}$$


Proofs building upon this proof

Exact values of the trig functions

This table shows all exact values of sine, cosine and tangent.

Trig values of 3 degrees

This proof shows the exact value of sin(3), cos(3) and tan(3).

Trig values of 36 degrees

This proof shows the exact value of sin(36), cos(36) and tan(36)

Trig values of 54 degrees

This proof shows the exact value of sin(54), cos(54) and tan(54)