Trig values of 45 degrees

Geometry

Statement

The exact value of the trigonometry functions of $ 45 \degree $ are:

$$ \sin(45 \degree) = \tfrac{1}{2}\sqrt{2} $$

$$ \cos(45 \degree) = \tfrac{1}{2}\sqrt{2} $$

$$ \tan(45 \degree) = 1 $$

Proof

Construct triangle $ ABC $ with $ \angle A = \angle C = 45 \degree $ and $ \angle B = 90 \degree $, like the image below.

Note that this triangle is an isosceles triangle with $ AB = BC $. Now call those sides $ m $.

Calculate $ AC $ using the Pythagorean theorem:

$$ AC = \sqrt{AB^2 + BC^2} = \sqrt{m^2 + m^2} = \sqrt{2m^2} = m\sqrt{2} $$

Sine

From the triangle, note that $ \sin(\angle A) = \dfrac{BC}{AC} $, so:

$$ \sin(45 \degree) = \frac{m}{m\sqrt{2}} = \frac{1}{\sqrt{2}} = \tfrac{1}{2}\sqrt{2} $$

Cosine

From the triangle, note that $ \cos(\angle A) = \dfrac{AB}{AC} $, so:

$$ \cos(45 \degree) = \frac{m}{m\sqrt{2}} = \frac{1}{\sqrt{2}} = \tfrac{1}{2}\sqrt{2} $$

Tangent

From the triangle, note that $ \tan(\angle A) = \dfrac{BC}{AB} $, so:

$$ \tan(45 \degree) = \frac{m}{m} = 1 $$


Proofs building upon this proof

Exact values of the trig functions

This table shows all exact values of sine, cosine and tangent.

Trig values of 15 degrees

This proof shows the exact value of sin(15), cos(15) and tan(15)