Trig values of 30 and 60 degrees

Geometry

Statement

The exact value of the trigonometry functions of $ 30 \degree $ and $ 60 \degree $ are:

$$ \sin(30 \degree) = \tfrac{1}{2} $$

$$ \cos(30 \degree) = \tfrac{1}{2}\sqrt{3} $$

$$ \tan(30 \degree) = \tfrac{1}{3}\sqrt{3} $$

$$ \sin(60 \degree) = \tfrac{1}{2}\sqrt{3} $$

$$ \cos(60 \degree) = \tfrac{1}{2} $$

$$ \tan(60 \degree) = \sqrt{3} $$

Proof

Construct triangle $ ABC $ with $ \angle A = \angle B = \angle C = 60 \degree $. Then draw altitude $ CD $ on $ AB $ so that $ \angle C_1 = \angle C_2 = 30 \degree $, like the image below.

Let $ BD = m $. Because this is an equilateral triangle, $ BC = 2m $.

Now find $ CD $ from the Pythagorean theorem:

$$ CD = \sqrt{BC^2 - BD^2} = \sqrt{(2m)^2 - m^2} = \sqrt{4m^2 - m^2} = \sqrt{3m^2} = m\sqrt{3} $$

Sine 30

From the triangle, note that $ \sin(\angle C_2) = \dfrac{BD}{BC} $, so:

$$ \sin(30 \degree) = \frac{m}{2m} = \frac{1}{2} $$

Cosine 30

From the triangle, note that $ \cos(\angle C_2) = \dfrac{CD}{BC} $, so:

$$ \cos(30 \degree) = \frac{m\sqrt{3}}{2m} = \tfrac{1}{2}\sqrt{3} $$

Tangent 30

From the triangle, note that $ \tan(\angle C_2) = \dfrac{BD}{CD} $, so:

$$ \tan(30 \degree) = \frac{m}{m\sqrt{3}} = \frac{1}{\sqrt{3}} = \tfrac{1}{3}\sqrt{3} $$

Sine 60

From the triangle, note that $ \sin(\angle B) = \dfrac{CD}{BC} $, so:

$$ \sin(60 \degree) = \frac{m\sqrt{3}}{2m} = \tfrac{1}{2}\sqrt{3} $$

Cosine 60

From the triangle, note that $ \cos(\angle B) = \dfrac{BD}{BC} $, so:

$$ \cos(60 \degree) = \frac{m}{2m} = \tfrac{1}{2} $$

Tangent 60

From the triangle, note that $ \tan(\angle B) = \dfrac{CD}{BD} $, so:

$$ \tan(60 \degree) = \frac{m\sqrt{3}}{m} = \sqrt{3} $$


Proofs building upon this proof

Exact values of the trig functions

This table shows all exact values of sine, cosine and tangent.

Trig values of 15 degrees

This proof shows the exact value of sin(15), cos(15) and tan(15)