Statement
The exponents can be multiplied when a power is raised to another power.
$$ \big(a^b\big)^c = a^{b*c} $$
Proof
From the definition of powers, write out the factors of $ \big(a^b\big)^c $.
$$ \big(a^b\big)^c = \underbrace{a^b * a^b * a^b * ...}_\text{c times} $$
Do this again for $ a^b $.
$$ \big(a^b\big)^c = \underbrace{\overbrace{a * a * ...}^\text{b times} * \overbrace{a * a * ...}^\text{b times} * \overbrace{a * a * ...}^\text{b times} * ...}_\text{c times} $$
Now the factor $ a $ is repeated $ b * c $ times, thus:
$$ \big(a^b\big)^c = a^{b*c} $$