Coefficient rule in calculus

Calculus

Statement

The derivative of a function with a coefficient is the coefficient times the derivative of that function.

ddx(cg(x))=cg(x) \tfrac{d}{dx}\bigg(c*g(x)\bigg) = c * g'(x)

Proof

Define function f f .

f(x)=cg(x) f(x) = c * g(x)

Take the definition of the derivative.

f(x)=limh0(f(x+h)f(x)h) f'(x) = \lim_{h \to 0}\left(\frac{f(x + h) - f(x)}{h}\right)

f(x)=limh0(cg(x+h)cg(x)h) f'(x) = \lim_{h \to 0}\left(\frac{c * g(x + h) - c * g(x)}{h}\right)

Factor out the c c and move it out the fraction.

f(x)=limh0(c(g(x+h)g(x))h) f'(x) = \lim_{h \to 0}\left(\frac{c * \bigg(g(x + h) - g(x)\bigg)}{h}\right)

f(x)=limh0(cg(x+h)g(x)h) f'(x) = \lim_{h \to 0}\left( c * \frac{g(x + h) - g(x)}{h}\right)

Move the c c out the limit.

f(x)=climh0(g(x+h)g(x)h) f'(x) = c * \lim_{h \to 0}\left(\frac{g(x + h) - g(x)}{h}\right)

Now the definition of the derivative of g(x) g(x) arised.

f(x)=cg(x) f'(x) = c * g'(x)


Proofs building upon this proof

Exponent rule in calculus

This proofs show the derivative of a^x is a^x * ln(a).

Log rule in calculus

This proofs shows the derivative of a logarithmic function.