Statement
The derivative of a function with a coefficient is the coefficient times the derivative of that function.
dxd(c∗g(x))=c∗g′(x)
Proof
Define function f.
f(x)=c∗g(x)
Take the definition of the derivative.
f′(x)=h→0lim(hf(x+h)−f(x))
f′(x)=h→0lim(hc∗g(x+h)−c∗g(x))
Factor out the c and move it out the fraction.
f′(x)=h→0lim⎝⎛hc∗(g(x+h)−g(x))⎠⎞
f′(x)=h→0lim(c∗hg(x+h)−g(x))
Move the c out the limit.
f′(x)=c∗h→0lim(hg(x+h)−g(x))
Now the definition of the derivative of g(x) arised.
f′(x)=c∗g′(x)